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ihis paper strives to provide a sound underpinning for the theory
of stochastic games. Section 2 is a reworking of the Bewley-Kohlberg
result integrated with Shapley's; the "biack magic™ of Tarski's principle
is replaced by the ''gray magic" of the Hilbert Nullstellensatz. Section
3 explicates the underlying topology and measure theory; I believe it is
as necessary for Mertens and Neyman's proof of the minmax theorem [8] as
it is for mine [9, 10]. Finally, Section 4 establishes a result on this
sort of structure which may be of some independent interestéfin any case,
it is critical for the argument in [10].

This work was strongly influenced by Andrew Gleason. Other acknow-

ledgments may be found in [10].




Fix a stochastic game, In this section we study the r-discount
game, following [11] and [3].

Let S, the state set, A (resp. B ) the choice set each turn

for A (resp. B ), and C , with fixed measurable function q: [0,1] =+ C
all be finite sets; let & : SxAxBxC+ S and d:SxAxBxC ~ [N, N
give the state and the outcome resulting from choices (starting in state
8€S) of a€A, bEB and random c € C . Without loss of generality,
these sets and functions describe the game completely. Consider now the

stochastic game, with fixed starting state s , and discount rate

(- -3
r € (0,1) ; that is, let the payoff function be 2 di(l--lr);"-:l » Where
i=]1
h

d, the payoff on the :i.t step.

i

As Z di(l-r) -1 is a continuous payoff function on a pair of
i=1

compact strategy spaces (see Section 3) the min-max theorem follows immed-
iately (this well;known result follows rapidly from [11]); let the value of the
game, for starting state s, be Vs(r) . Following [3] and {11] we characterize
the values and optimal strategies, by considering the system of equations:

U (r) = val(Exp(d(s,a,b,c)) + (A-r)_J P(E)-U;(r)) . (2.1s)

c 8€S

Here P(s) = measure({t € [0,1] : 4(s,a,b,q(t)) = 8}) depends upon a ,
b, and 8 ; val is just the ordinary min-max value of the matrix.
For fixed r , think of the system as one equation in a variable in
clsI . Applying the Contraction Mapping Theorem ([6), p. 229), it
must have a unique solution ('l‘l's(r)) . Indeed, as the contraction con-
stant ||1-r || is bounded away from 1 on any interval |[r%, 1] , and

indeed on a set {x+yl € C: r* <x <1, 0 <y < é(r®)}, (a'a(r)) is




a continuous function of r in (a neighborhood of) (0,1) .

Proposition 2.2: For r € (0,1) , this solution is precisely (V’(r)) .

Proof: It is clearly enough to show the following, for fixed r € (0,1) :

By playing as his ith move an optimal strategy in
the game given by the matrix of (2.131_1), Mr. A (2.3)
guarantees himself a payoff of at least ﬁ; (r) .
0
(2.3) is clearly equivalent to:
¥ (0 2V (1) for all 5, €5 - (2.4)

(4] 0

So suppose (2.4) is false. Let C = max(Vs (r)-ﬁ; (r)) ; choose s
' S 0 0

so that the max is achieved.
Then

ﬁg(r) = val(Exp(d(s,a,b,c)) + ) (1-1)P(8) - T=(x))
C €S 8

= -(1-r)a + val(Exp(d(s,a,b,c)) + 2 (1—r)P(§)-(B;(r)4-a))
C 8€ES

> -(1-r)a + val(Exp(d(s,8,b,c)) + _J (1-r)P(s) V() .
c 8€S

So Bu(r) + a > val(Exp(d(3,a,b,c)) + _] (1-r)P(s:a,b,8) -V=(r)) .
c 8ES
(2.5)

But since both sides of (2.5) equal Vg(t) » Wwe have a contradiction.

a

It is well~known that the value of a matrix is one of a finite list

of rational functions of the coefficients (namely the value of some aquare




B

submatrix; see [8 ], p. 76). Thus the system may be viewed as a set of
polynomial equations-~-identifying S as {1,...,k} , where k = |s| --
gl(xl,..., xk) -0, ..., gk(xl, ...,xk) = 0 , where the coefficients

lie in the algebraically closed field F . Now, if the ideal

k
(gl,.... 8k) --that is, {12111131 : hie F,1=1,...,k} --~equals the

k
unit ideal (1), then some linear combination ] h.g, =1, h EF
1=1 % K
for 1 =1, ..., k ; this is impossible because Zhigi((vs)) - Zhi-O £ 0
1=1 i=)
when viewed as functions of r .

By the Hilbert Nullstellenstaz (weak form; see [2], p. 69), then,
the only other possibility is that {(xl, ...,xk) € Fk : gl(xl, ...,xk)
=0, ..., gk(xl,..., xk) = 0} 1is non-empty. On the other hand, we saw
above that the solution is uniqué in the much larger field of all functions
of r ; hence it is certainly unique in 'Fr, and precisely equal to
Gls(f))'...But an algebraié functibn whi;h maps reals to reals must in-
deed lie in F' = the fleld of real algebraic functions C F . Finally,
observe that each Vs(r) eauals, at each point, one nf a finite list of
algebraic functions; each pair of these can cross each other only finitely
often (for their difference is an algebraic function, which can only have
finitely many zeroes). Thus by the continuity of the Vs(r) , there
exists an interval (0,?) on which the Vs(t) are algebraic, for all
8ES.

F' has a natural ordering: f > g if and only if there exists
an ¥ such that £ > g on the interval (0.&) . Consider the games
(2.18) with the values V'(t) substituted in place of the u.(r) :+ then
these are ordinary two-person zero-sum games, with coefficients in F' ,
and hence have optimal strategies {f(a,s;r)} ; by construction, for

each a and s, f(a,s;r) belongs to F' . For each r , then, we




have optimal stationary strategies, algebraic in r , for the r-discount
game. Finally, it is well known that algebraic functions have Puiseaux
(fractional power) series expansions--see [l1)--and 8o we have checked

the

Theorem of Bewley and Kohlberg: The values of the r-discount game, and

the stationary optimal strategies, have Puiseaux expansions.




More generally, consider an infinite decision tree such that, at
each node, the choice set is finite. By possibly duplicating certain
branches, we may assume that, without loss of generality, there exist
finite sets Z

i=1,2, ..., such that 2Z. consists simply of the

i’ 1
first node, 22 is the choice set at the first node, 23 is the choice

set at the second node, no matter which node was chosen as the second

node, and so on. Let Q be the space of paths on the tree;

Q= lezzx ... 1is compact by Tychonoff's theorem ({9), p. 144).

Simultaneously fix probability distributions on the choice set
at each node. Then these distributions induce a sequence of functions

A

My + R such that

X eoo X2

1 i

L oug(zys 290 cenzg g0 8) = wy (2, 00ey 2, )

zezi

for any fixed for any i =1, 2, ... .

SURRITRLII R
The following is a special case of the Kolmogorov Extension

Theorem ([5]).

Proposition 3.1: There exists a measure y on Q such that

u({zllx{zz}x... x{zi}xzi+1xzi+2x ces) = ":I.(zl’ cees zi) , for all

Zys eoes ) for all 1.

Proof: Consider the ring generated by Z = the collection of sets of

the form

{zl}x x(zi}xzixziﬂx ces o

We clearly have a finitely additive set function p with the desired

i
I
§
1
_!
i
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properties; to check that u 1s a measuré, we need only confirm that

for any descending tower Yl 2Y,2 Y32 ... Y,€ 7 for all § ,

b
) =0 ([4], p. 39). But every element of

N Yj = ¢ implies 1lim u(YJ
j-]_ j-)Q

Z 1s both open and closed in the direct product topology; hence the same
is true of every member of the ring. Thus, by the compactness of Q ,

any tower descending to O has Y, = ¢ for all j sufficiently large;

b

hence 1lim u(Y,) = 0 trivially. Finally, since I 4is a base for the

g
direct product topology, the Caratheodory Extension Theorem extends

to the Borel field ([4], p. 54).

[

Denote by T a function which assigns to every node in N, the

set of nodes, a probabi}ity distribution on its choice set; denote the set
of all possible Tt by ‘M » the gpace of mixed strategies. Then every
T € M induces a probability measure Mo on Q. Let Pe M, the space
of pure strategies, be the set of all m € M such that, at every node,
7 selects some alternative with probability one. Then there exists a
canonical mapping f : P > Q, sending w € P into the path determined
by 7 . 7t also induces a probability measure 6T on P, and we have
er = uT?f .

Partition N into two disjoint subsets NB U NC wvhere N, will

B

be thought of as the set of decision nodes, and NC as the set of chance

nodes. Then we can write M = MBa(MC , Wwhere an element TB(TC) of
MB(MC) is an assignemnt to each node in NB(NC) a probability distribu-
tion on its choice set. Similarly P = PB"PC .

) then decomposes as a product measure:
(15,7¢)

»
€
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0 = 0 x 0 .

(tn,rc) g Tc

Agsume now that e is fixed. Letting d1 .

a sequence of measurable functions on Q , bounded below, we have

11,2, ... be

Proposition 3.2:

N )
1
inf lm inf [ [T ) 4, |dw,_.
Tt Q[Ni-l 17 (g, 7¢)

kY
= {inf 1im inf =) d,(du
nePy M o(Mim 17 (mgsme)

Thus thinking of NB as the nodes controlled by the decision-maker and
Nc as those controlled by nature (with nature's "strategy" known in ad-
vance, the decision-maker "might as well" play 3 pure strategy as a mixed

one. This is true even in a slightly stronger sense:

Corollary 3.3: If there exists a mixed strategy such that the infinum

is achieved, then it is also achieved by a pure strategy.

Proof of Proposition 3.2: For any i , for any Tg

fqdidu(TB’Tc) - fpdi(f(ﬂ))de(TB’Tc)(w)

- IP (fp d, (£(mg, "C))derB("C))derB(“B)
B 'C

by Fubini's Theorem ([9], p. 233). Thus of course

FRT e R,
- u = - 8 - de .
q{Ni=1 1| (ps7d) Py Pe N i) ¢




Observing that the support of 6_  1s & subset of PB on which
B

£(n, wc) H f(nn, nc) , for any wcePc , We see:

inf 1lim inf [ | [§ }d ]de do_
c

ﬂBEPB N PB P i=1 c "B

3 = inf 1lim inf f { d,fde_ .
* TEPL Moo M 1) e

But for any fixed Tg »

LN
1lim inf f j d de ds
Now B 1-1 Tc s

N
1
> inf 1lim inf = ) d,|de
} 1€l Moo ] lNzli] ¢’

by Fatou's Lemma ([9]), p. 199); of course, the same inequality holds if

we replace the left-hand side by the inf . But, since PBC MB , the
T EM
B B

reverse inequality also holds and so

inf 1lim inf [ [ Z dy|de_de_
€My Ne PP c B

= inf 1m inf [ |3 Z d,{de_ , and done.
N, L %
"BGPB N P i=] Tc

|

Proof of Corollary 3.3: For T8 such that the infinum is achieved, the

set of 7 4in the support of 6 such that lim inf de > 1 + 1
B NC 1 -k

is clearly of measure zero, where I 1is the infinum, and k an arbitrary
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positive integer. So the set where

N
lim inf %Zdide $1
Mo P {1=1 c

is indeed of measure zero. Since the support of 6T is of course of
B

measure one, we are done.

O

Note 3.4: The results of this section remain valid if "finite" is replaced

by "compact.™

Note 3.5: Our "mixed strategies' may not be the most general the decision-
maker could adopt. However, strategies with more complicated forms of
mixing can be disposed of in the same fashion using the compact form of

Proposition 3.2 (see Note 3.4).

et i
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Let {Zi} , Q, {ui} , and u be as in the previous section.
*

Suppose each 2 i has a distinguished subset 2 { such that

(ZIX... xzi_leIX(ZI_‘_l)chsz... ) =0 ; 1in other words, once a

* 15 reached, the path remains in the {Z;} with prob-

i
ability 1. For a given path 2z = (zl, Z9, ees) 5, let

node in some 2

,, *
(u({zl})g... x{zy  }xZPxZ o x.e) o et
u({zi}x...x{zi_llxzixziﬂxn. ) i-1 i-1
P.(i;2) =
*
0 if z, € Zi-l J
the probability (conditional on Zyy eees 25 ) of entering Z; . Suppose

we wish to integrate a function over Q which vanishes outside

(Z;)c x (Z;)cx' ... . Then, intuitively, we can integiate a smaller func-

tion, on a new measure which is bigger on (ZI)C x (z;)c X... , to achieve
the same result. This can be helpful if we wish to estimate the integral
by estimating the (smaller) function directly.

More precisely, we prove this result in terms of truncated sequences;
it is applied in Section 5 of J10)}. For any z = (.zl, 2, ... ) €EQ,
define the truncations z(k) = (zl, cess zk) € Z1 XeoaX 2y . Write also

Q(zl, eer ) = {zl}X{zz}x X{zk}xzk+1xzk+2><... C Q. Then

Proposition 4.1: There exists a probability measure 3 on Q such that,

for all k , for all fk : Z1

. *
fk : le... ><Zk_1xzk + {0},

X aes ka + R such that

k
£ (z00)du = [ £(2(0))+ T (1-P,(4;2))du .
Q Q 1=}
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Proof: By Proposition 2.1, to specify ?f we need only specify

a'(Q(zl, cees zi)) , for all Zys eees 2y for all 41 , while checking

e

that

.

SL WQ(2gs oens 2,1, D)) = W(Q2p, oeey 2y 1)) (4.2)
i7"

So we define a(Q(zl, ...,zk)) inductively on k .

Q) =1. Fix z = (2), +..) €Q

1_—1,:(m')-'u(Q(Zl)) if zl¢ ZI
uQcz)) = (4.3)

*
0 if z, € Z1

unless P, (1;z) =1 . In that case,

H(Q(z))) = u(a(z))) .

More generally, suppose we have specified \'\I(Q(zl, veesZg 4)) o If this

i-1
equals 0, we let ﬁ(Q(zl,..., Zg_1» zi)) =0 . If not, then also

u(Q(zl’ LA ] zi-l)) * 0 [ and we let

( 1 HTCTCHRRE N “ . |
1-P,(i52) u(Q(zl, cees zi—l)) u(Q 2y eees 2y
'l)'(Q(zl. coey zi)) - 1 . zi ¢ ZI
| 0 if 2z, € z;

unless, again, P,(i;z) =1, in which case we let E(Q(zl,..., zi))
= u(Q(zg, ..., 2.)) .

Now




13
N -—
(2,5 o0ey ’ )
;1‘221 1 21-10 %4
1 ;\x'(Q(zl, ceer 2y 9)) _
- SN ETEy u(Q(zl. T 21-1)) _z_zz*u(Q(zl. ceer 25 95 24)) .
141
But - Ez*u(q(zl.' cees 2y gy 24)) = (L=Pu(d32))uQ(zy, ooy 2y 1))
1744

by the definition of P,(1;z) , and so (4.2) is checked, and we have
defined a measure 1'\1' .

It remains to show that

k
[ £,z())du = [ £ (2())+ T (1-P,(1;2))di .
Q Q i=1

We start by observing that

[~ 1 7 :

Q zlx. . Xz Q(zlx. .o sz)

k
is just a constant,as is I (1-P,(i52)) ,
i=]1

and hence we are asking whether Zf(zl, ceos zk) -'ﬁ'(Q(zl, cees zk))

But on Q(zlxn.xzk) R fk

k
= Zf(zl, ceus zk)- n (1-P*(1;z))’1‘t'(Q(zl, cees zk)) . This of course follows
i=]1 .

if

k

BQz, s ) = 1 (- By(di2)) CICHRE ) (4.4)

i
* _
vhenever f, (2,,...,2) #0 --i.e., vhenever zk¢ A
When k =1, (4.4) is immediate by (4.3). So assume proved for

k-1 , and check for k . Then, for any z, € ZI , we define U on

Lk A L i i - -




It s L aties 3

Bt 40 ad
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- 1
Q(zl) by u = T=7,( Y Defining | exactly as before, we apply

induction to get

k
n (l-P*(l;z))"ﬁ(Q(zli L zk))
i=]1

= (1-P,(132) u(Qzy, c0y 2h)) = 0(QZy, weeu zy))

and we are done.

-y
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